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ABSTRACT

From the UCSD OSO-7 X-ray experiment data, we have

identified 54 X-ray bursts with 5.1-6.6 keV flux greater

3 -2 -1 -1
than 10 photons cm sec keV which were not accompanied

by visible He flare on the solar disk. By studying OSO-5

X-ray spectroheliograms, He activity at the limb and the

emergence and disappearance of sunspot groups at the limb,

we found 17 active centers as likely seats of the X-ray

bursts beyond the limb. We present the analysis of 37 X-ray

bursts and their physical parameters. We compare our

results with those published by Datlowe et al. (1974 a and b)

for disk events.

The distributions of maximum temperature, maximum

emission measure, and characteristic cooling time of the

over-the-limb events do not significantly differ from those

of disk events. We show that of conduction and.radiation,

the former is the dominant cooling mechanism for the hot

flare plasma. Since the disk and over-the-limb bursts are

similar, we conclude that the scale height for X-ray

emission in the 5-10 keV range is large and is consistent

with that of Catalano and Van Allen (1973), for primarily

1-3 keVy emission, 11,000 km.

Twenty-five or about 2/3 of the over-the-limb events

had a nonthermal component. The distribution of peak 20 keV

flux is not significantly different from that of disk events.

However, the spectral index at the time of maximum flux is

significantly different for events over the limb and for



events near the center of the disk; the spectral index for

over-the-limb events is larger by about Ay= 3/4. If hard

X-ray emission came only from localized sources low in the

chromosphere we would expect that hard X-ray emission would be

occulted over the limb; on the contrary, the observations

show that the fraction of soft X-ray bursts which have a

nonthermal component is the same on and off of the disk.

Thus hard X-ray emission over extended regions is indicated.



1. INTRODUCTION

Solar X-ray bursts contain emission of two general types.

In the range below 10 keV, thermal emission from a plasma

assumed to have a Maxwellian electron distribution with a

temperature of the order of 107 K (Culhane and Philips, 1969)

dominates the spectrum. At higher energies, the spectrum is

conventionally represented as a power law of the form

F(hv) = A (hv) -Ywhere F(hv) is the flux in photons cm -2sec -1

keV-land y the spectral index.

At energies greater than a few keV, various experiments

have recorded the time profile of the X-ray flux from the

entire visible solar disk. Observing solar X-ray bursts

from various locations in space opens multiple possibilities

for studying geometrical and physical properties of the

coronal plasma. The technique of observing a burst with two

different spacecraft at different heliocentric longitudes

has been applied successfully by Catalano and Van Allen

(1973), who determined the scale height of the soft X-ray
0 4

emission in the 2-12 A is 1.1 x 10 km. Using lunar occulta-

tion of an X-ray burst, Kreplin and Taylor (1971) determined

that the spatial extent of X-ray emission in the 1-8A range

to be 140,000km. Imaging experiments have also been flown

(Vaiana et al. 1973 a and b) to measure the sizes of soft

X-ray emitting regions. For hard X-rays comparable experiments

have not been possible.
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Wood et al. (1972) observed EUV radiation correlated

well in time with nonthermal X-ray emission, and concluded

that this emission was due to heating by collision losses

of the X-ray emitting electrons. The spectral lines involved

were characteristic of the chromosphere. They concluded

that the chromosphere was heated directly by nonthermal

electrons. In this case the ambient density is large

enough that electrons are expected to lose all of their energy

to collisions (Hudson, 1973), so that the thick-target

approximation is applicable. Vorpahl (1974) has given a

model in which electrons are accelerated in arch systems

at heights of -5000 km; these electrons move down magnetic

flux' tubes, producing correlated X-ray, microwave, and Ha

bright-point emission. Kane and Donnelley (1971) and Kane

(1974) have proposed a similar model, except that electrons

with E 20 keV escape to the corona, where they emit X-rays

by the thin-target process. In all of these cases there

is a thick-target X-ray component at low altitudes; this

should be occulted by the solar limb for any flare more than
0

7 behind the limb, corresponding to a minimum visible height

of 5000 km.

X-ray emission from high in the corona is also possible.

Frost and Dennis (1971) reported hard X-ray emission from the

flare of March 30, 1969, which was well behind the limb.

Lin (1972) has reported the observation of solar electrons in
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interplanetary space with a spectrum extending down to 6 keV;

these electrons must have been accelerated in the lower corona

or above in order to reach the earth. Datlowe and Lin (1974)

have reported a correlated observation of X-rays, type III

bursts, and interplanetary electrons; comparison of the

electron and X-ray spectra indicates that thin-target

emission was the origin of the X-ray burst. X-ray emission

of this type, extending far into the corona, should be occulted

only slowly with increasing solar longitude.

There exists one measurement of the spatial extent of a

hard X-ray emitting region (Takakura et al. 1971). The obser-

vational technique consisted of a balloon-borne modulation

collimator for X-rays in the energy range 20-60 keV. The size

of the hard X-ray source was estimated to be about one minute of

arc (50,000km), but no estimate of the height of the emission

came from this data. Balloon borne observations can be expected

to make only very few observations of this type; however,

satellite borne hard X-ray imaging experiments of this type

could bring in significant new information on hard X-ray emission

processes. Such observations represent the outstanding obser-

vational problem in hard X-rays at the present time. However,

hard X-ray imaging systems are not to be ready before the next

solar maximum; thus one must use another method such as limb

occultation of a large group of flares to learn about the

physical extent and height dependence of the spectrum of hard

X-rays.
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Occultation allows us to determine the respective heights of

soft and hard X-rays. If hard X-rays arise from very high

temperature plasmas as proposed by Chubb (1970) and Brown

(1973), occultation may put some limit on the dimensions

of the hard X-ray flare and serve as a probe for the

temperature structure of the coronal cloud. If on the

other hand, hard X-rays are produced by electrons releasing

their energy through non-thermal bremsstrahlung (Brown, 1971),

occultation can help to pinpoint the site of X-ray emission.

Here we present the results of a search for behind the limb

X-ray bursts using data from the UCSD experiment on OSO-7.

The UCSD solar X-ray experiment uses a two-detector system to

cover energy ranges which correspond with X-rays of thermal

and non-thermal origin in solar bursts: a proportional counter

which has eight energy channels between 2-15 keV and scintillator

which has nine logarithmically spaced channels between 10-320 keV.

Harrington et al. (1972) and McKenzie et al. (1973) give more

details on the experiment.

2. DATA SELECTION

From the rich supply of observations reported by Vaiana

et al. (1973 a and b), it is evident that the spatial distribution
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or geometry of the X-ray sun is determined by the coronal

magnetic fields. Rust and Roy (1971) and Roy (1972) have

demonstrated that coronal magnetic fields above active regions

are closely matched by field lines computed from a potential

field calculated from measured photospheric fields; most

structures related to flare activity are expected to show

extent in height of the same order as the size of active

regions, e.g. 105 km. Accordingly, one should expect the

X-ray emission to be visible from bursts located as far as 300

behind the limb, i.e. more than two days before or after limb

passage of the associated active group.

Before searching for bursts originating from behind-the-

limb active regions, we established a threshold of soft X-ray

flux above which the absence of reported Ha flare would suggest

a likely candidate for a limb occulted flare. McKenzie (1973,

unpublished) found that 76% of 601 OSO-7 X-ray bursts above

3 -2 -1 -110 photons cm sec keV had an associated Ha flare reported

in Solar Geophysical Data (SGD). Datlowe et al. (1974a) found

a similar percentage of identical flares in 197 bursts also

from the OSO-7 instrument. Reduced visibility near the limb

and lack of visibility behind the limb can account for soft

X-ray bursts in the absence of an Ha flare; the largest

bursts on the disk remain associated with easily detectable
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He emission and are less sensitive to longitude fall-off

effects. If the remaining 24% of the bursts are from flares

behind the limb and if we assume that flares occur uniformly

all around the sun, it is required that big soft X-ray bursts

stay visible as far as 280 over the limb; this would mean

that the emission needs to extend as far as 105 km. Therefore,

we choose the 5.1-6.6 keV OSO-7 proportional counter channel

3 -2 -1and establish the threshold flux at 10 photons cm sec

keV -1

Although SGD is incomplete in reporting small flares or

events near the limb, small X-ray bursts of the order of

2 -2 -1 -110 photons cm sec keV can be associated with Ha events

on high resolution filtergrams of the whole sun (Figure 1).

For the OSO-7 observing period, soft X-ray bursts with 5.1-6.6

3 -2 -1 -1keV fluxes greater than 103 photons cm sec keV were

observed in association with 64 Ha disk flares recorded on

filtergrams taken by the 8.6-in. vacuum telescope at Big Bear

Solar Observatory and nine more events recorded with the

Tel Aviv photoheliograph. Of these 73 events, five (7%) were

not recorded by SGD. Therefore, a selection of large X-ray

bursts without Ha flare reported in SGD would be contaminated

by missed disk events to a small degree. However, because of

our selective procedure, this 7% represents an upper limit.

A burst with no SGD reported flare is not the sole criterion

for beyond-the-limb candidacy; three more criteria described

in the following are used to ensure the right identification.

After initially identifying 115 bursts with no Ha flare
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with 5.1-6.6 keV flux above threshold, we investigated their

possible association with the presence of a large active region

near east or west limb within a few days of the burst occurrence.

Early in our search, a link between chains of strong bursts

with flaring activity behind the limb was suggested by the

obvious clustering in time of the bursts, with each family

occuring within two days of limb passage of large sunspot

groups. We present six families of such bursts in Table I

with their associated candidate regions. This clustering

proved very helpful in pinpointing candidate regions.

Furthermore, to ensure the proper identification, we relied

on various data such as chromospheric activity, like surges or

eruptive prominences, appearing above the limb; in most cases,

such activity was seen to occur continuously prior to and after

the bursts without showing close direct association with the

bursts. Study of Tel Aviv and Big Bear Solar Observatory He

films provided in this way reliable indications of activity

beyond the limb.

The most helpful observations for identifying activity behind

the limb and discriminating between east and west limbs as its

seat, were the soft X-ray contour maps with spatial resolution

of 1.6 arc min obtained by the University College of London

and Leicester University X-ray experiment on OSO-5. The maps

reproduced in SGD are from one or two orbits of "quick-look"

data and give a solar image at 9.1-10.5 A . The maps are from

non-flare periods and display in a striking way the hot coronal
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components of active regions. The X-ray enhancement appears

or disappears well before or after east or west limb passage

of a group. (see Appendix I)

After selecting 17 candidate regions, we determined the

location of the groups over the limb. The position of each

candidate was plotted as a function of time from Mt. Wilson

sunspot drawings and McMath plage data for four to seven days

following or preceding limb passage; these positions represent

roughly the center of the groups or plages. This position vs

time relation was extrapolated beyond 900 such as in Figure 3

which applies to Mt Wilson sunspot group 18839. For most cases

there is good agreement with Newton and Nunn (1951) relationship

for large recurrent sunspots,

w =14.38 - 2.77 sin20 deg day- , (1)

where P is the region latitude. In some cases, the groups display

a slower rotation rate than predicted by (1).

Once the positions of the active regions are established,

the minimum height above which X-ray emission becomes visible

can be calculated following a few assumptions: first the X-ray

emission originates in the corona radially above the chromo-

spheric flare; second we locate the would-be flare near the

active region center; finally, we calculate the minimum height

by neglecting the effect of the latitude. The error introduced

by the last assumption is small in comparison with uncertainties

in the flare position and sunspot motions or changes. The
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height above which X-ray emission is observed can be expressed as

h >6.97 x 105 (1 - sin 8) km, (2)

sin 0

where 0 is the longitude in degrees from the central meridian.

Table A (Appendix II) gives 54 strong X-ray bursts accompanied

by no Ha flare. The bursts originate from 17 candidate active

regions; their extrapolated positions and the burst minimum

visible heights are given in the last two columns. The events

at 0 <900 had no reported chromospheric flares; because of the

procedure by which 0 is defined, these events might have occurred

slightly beyond the limb.

In addition to those events, we have selected a set of

37 non-thermal 'limb' bursts identified from SGD as coming

from flares located between 600 < 0 <900. As a reference for

comparison to these, we used the same-set of 59 non-thermal

events at 0O 0 <600 as used in Datlowe et al. (1974b), hereafter

identified as 'center' events.
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3. ANALYSIS OF THE X-RAY BURSTS

The procedure for analyzing solar X-ray bursts in the energy

ranges of 5-15 keV and 10-100 keV from OSO-7 data has been

previously described in detail by McKenzie et al. (1973)

and Datlowe et al . (1974 a and b). Datlowe et al. (1974 a

and b) also give the available range of the thermal emission

and non-thermal spectrum parameters for the OSO-7 detector.

We give a summary of the method in Appendix III.

I. THE PARAMETERS OF THE THERMAL X-RAY EMISSION

i) TEMPERATURE AND EMISSION MEASURE BEHAVIOR

The spectra of 37 of the total 54 over-the-limb X-ray bursts

were analyzed. The maximum temperature Tmax distribution of

the thermal bursts behaves like the one of bursts accompanying

flares on the disk (Figure 4a). The median T is identical,
max

i.e. 17 x 106 K. The distribution of T for the three sets
max

of events do not exhibit statistically significant differences.

The behavior of Tmax versus distance beyond the limb of the

candidate sunspot group (giving dependence on minimum visible

height of the burst) reveal no definite trend (Figure 4c).

EM is the maximum emission measure under the constraintmax

that the temperature must have been above 107 K (see Figure 1

of Datlowe et al. 1974 a). The distribution of EM doesmax

not differ in a statistically .significant way from the same

distribution of center events. The median value for EM
max is
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50 x 10 cm for over-the-limb bursts; this is higher than

47 -330 x 10 cm for bursts accompanying disk subflares, but similar

to EM of bursts.associated with Imp 1 flares on the disk.
max

This would indicate that over-the-limb bursts originate from

bigger flares. EM is plotted as a function of minimum
max

visible height of the burst in Figure 4d; again the data is

insufficient to indicate any definite trend.

ii) THE COOLING PROPERTIES OF THE THERMAL X-RAY BURSTS

We have studied the thermal evolution of the events by

defining a convenient form for the characteristic cooling

time, T,

-1
(T) 1 dT .

T dt

We compared the cooling times of 33 over-the-limb events

(Figure 5) with those of 77 events analyzed by Datlowe

et al. (1974a). Although the median cooling time of 800

sec for over-the-limb events is larger than the 600 sec

typical of disk bursts, the distributions do not differ

significantly (Table II).

The two dominant cooling mechanisms are radiation and

conduction, which have a different dependence of cooling rate

with temperature. The characteristic cooling time by

radiation is expressed in a convenient form as

tR =3 kT 1/2 ,R n L (ne,T) (kT) (4)n L R(n ,T)
e
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where LR, a weak function of the temperature around 107 K,

+3 -1is the cooling rate coefficient, ergs cm sec . In our

computation, we have used values for LR from Culhane et al.

(1970) who take into account line and continuum processes.

Densities of the X-ray emitting coronal plasma may be

calculated approximately from the values of the emission

2measure n V and from estimate of flare volumes deduced frome

the size of the chromospheric He flare. Those densities are

found to vary only a little, being of the order of a few

10 -3times 10 cm (Hudson and Okhi, 1972; Neupert et al., 1974;

Rust and Roy, 1974). For these typical flare plasma densities,

the characteristic cooling times are T 104 sec. Moreover, if

radiative cooling dominates, we expect a positive correlation

between the cooling time and the peak temperature.

For conduction cooling, lack of electron mobility across

magnetic fieldlines converts the problem to one dimension.

The relevant length is the dimension k along the magnetic

field lines threading the flare volume. The characteristic

cooling time by conduction may be expressed in a similar way

by
2

t C  e3 n e  sec (5)

where

K = 1.844 x 10- 5 T5 / 2

InA ergs sec cm Kl

(6)

and is the coefficient of thermal conductivity along the

magnetic field. In A, the Coulomb logarithm, is about 20
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for the range of temperatures and densities we are concerned

with. Z is the characteristic dimension of the conduction

cooling path. So the temperature dependence of conduction

cooling times goes as

T -(a) -2/5 (7)

where a is a function of ne and £2. This predicts a coefficient

of correlation between the cooling time and T which is negative.

Unlike radiative cooling, conductive cooling is sensitive to

the geometry assumed, and a priori estimates cannot be made

as to conductive cooling times.

The distribution of characteristic cooling times of 33

over-the-limb events, shown in Figure 5, is an order of

magnitude less than predicted by radiative cooling

For 50 events of 122 in Datlowe et al. (1974b), the correlation

between T and has been determined; the correlation coef-
max

ficient is -0.6. The corresponding coefficient of correlation

for 39 limb and over-the-limb events is -0.4. How good the

correlation is remains uncertain, but we are confident that its

sign is negative. We have considered instrumental biases and

concluded that the origin of the correlation is not instrumental.

Thus the observational evidence favors conduction as the dominant

cooling mechanism over radiation.

Figure 6 exhibits a power law temperature decay of the form
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T = T (t - t ) -  (8)
o 0

where p = 0.2. An exponent value of p = 0.4 is expected from

conductive cooling. We have identified five more over-the-limb

events with a power law cooling. In each case an exponential

e-t/T does not fit. The typical p= 0.2.
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II. HARD X-RAYS FROM OVER-THE-LIMB EVENTS

i) CORRELATION WITH NON-THERMAL EVENTS

Of the 37 analyzed bursts with 5.1-6.6 keV flux greater

3 -2 -1 -1
than 10 photons cm s keV , 25 bursts or about 2/3, have

a non-thermal component. This ratio is the same as found by'

Datlowe et al. (1974 a and b) for similar size thermal bursts

accompanying flares on the disk. The fact that such a ratio is

the same for partially occulted bursts suggests that non-thermal

X-ray radiation originates at least as high in the corona as

the soft X-ray thermal radiation.

ii) DURATION AND FULL-WIDTH AT HALF MAXIMUM OF NON-THERMAL

EVENTS

To compare the time histories of non-thermal events, we

have studied the duration and the full-width at half maximum

(FWHM) of the 20 keV hard X-ray flux. "Duration" as used here

means the time interval over which the flux is above the

-2 -1 -1threshold for analysis, A = 0.1 photons cm sec keV - .

"FWHM" is similar, except that the threshold is replaced by

1/2 A , Am being the 20 keV peak flux.

As shown in Table II, the median values of duration and FWHM

are the same for limb and center events. The median

duration and median FWHM for over-the-limb events are larger

by 50% and 75% respectively than those of limb and center

events. The distributionof durations for over-the-limb is

not statistically different from the limb and center events
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distributions. The distribution of FWHM of over-the-limb

events is statistically different with a probability of the

distribution occurring at random of 3 x 10- 3

iii) DISTRIBUTION OF THE PEAK FLUX AND. SPECTRAL INDEX OF

HARD X-RAYS FROM OVER THE LIMB

The median value of the 20 keV peak flux is A = 0.84

-2 -1 -1photons cm sec keV for over-the-limb bursts; this is about

the same as found by Datlowe et al. (1974b) for 122 disk

bursts. The distribution is also identical for the limb events

with A = 0.79 (Table II). The distributions are not statisticallym

different (Figure 7).

As a representative value of the spectral index, we use

the value at the time of maximum 20 keV flux, ym. Figure 8b

shows the distribution of this quantity for the limb and for

the over-the-limb events; the same distribution for the center

events is shown in Figure 8a. To determine the probability

that the distribution in 8b is a random sample of the

distribution shown in 8a, we use the Kolmogorov-Smirnov test

(Brunk, 1960). The result is that the probability that the

25 over-the-limb spectral indices are a random sample of the

distribution 8a is 5 x 10 ; for the 37 limb events, the

corresponding probability is 5 x i0-3; for the 62 events

-4
combined, it is 8 x 10 . We conclude that the difference in

the distributions 8a and 8b is statistically significant. The

spectra of events near and beyond the limb are steeper by

about Ay = 3/4.
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4. CONCLUSIONS

Our first conclusion is that the thermal emission of limb

occulted X-ray bursts does not differ from that of events near

the center of the disk. This is consistent with the interpreta-

tion that the scale height of soft X-ray emission in the energy

range 5-10 keV is similar to that found by Catalano and Van

Allen, (1973), 11,000 km, for X-ray emission primarily in the

range 1-3 keV. Alternatively, the occultation of the soft

X-ray source in this sample of over-the-limb bursts was a

small effect.

Within the context of whether the dominant cooling

mechanism is radiation or conduction, these observations

support conduction. First, the observed cooling times derived

from the temperature histories of the over-the-limb and limb

bursts are too small to be explained by radiative cooling.

Secondly, we observe an anticorrelation between the maximum

temperature and the cooling time, which is expected on the

basis of conduction cooling and not from radiation. Thirdly,

for a static flare plasma with impulsive heat injection, the

decay of the temperature would be described by a power law

T-t- , where V=.4. In those five cases where the temperature

decay was described unambiguously by a power law, the

observed exponent p=.2, in reasonable agreement with conduction.
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However, it should be pointed out that the problem as

formulated here is not strictly applicable to the solar plasma.

In this formulation we infer from a decrease in temperature

that heat is flowing out of the flare plasma. However, during

the growth phase of the flare plasma, heat is rapidly being

added in the form of new hot material, even though the temperature

is declining. In particular, if the heat in the flare plasma

is represented by Q, then

dQ d dN dTdQ - d (3NekT) = 3kT -e + 3N k --
t dtdt e dt (9)

and during the growth phase of the flare plasma, the term

dN /dt clearly dominates the heat flow (Datlowe et al., 1974a).
e

Curiously the temperature evolution is largely independent

of the growth of the emission measure; the rate of change of

temperature is apparently unaffected by the presence or absence

of the convective heat input (dN/dt) term. A model which

would take these features of the heat flow into account would

be considerably more sophisticated than is implied by the two

alternatives, conduction and radiation. Nonetheless, within

the limited framework in which the question of conduction

versus radiation is meaningful, the present data strongly favor

conduction as the dominant cooling mechanism.

The spectral index of the hard X-ray burst at maximum

flux ym, is steeper by about Ay = 3/4. As compared with the

earlier paper (Datlowe et al., 1974 b) in which this effect was
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reported, the statistical significance of the result has been

improved by about a factor of 10 due to an increase in the

number of events with 0>600, from 27 to 62. This is not however

an independent confirmation of the earlier result, since all

the events of the earlier paper are included in the present

sample. We are confident that this is a statistically signifi-

cant (p-10-3 ) experimental result and that it is not the

result of an instrumental bias.

The most important result of the over-the-limb burst

characteristics is that the fraction of the bursts which have

a non-thermal component is 2/3, exactly the same as found for

the 122 X-ray bursts studied in Datlowe et al. (1974b). What

is more, of the eight.bursts with expected locations with 0

greater than 1000, corresponding to minimum visible heights

4 5
from 10 to 10 km, five exhibit a detectable non-thermal

component.

Thick-target models of X-ray emission assume that the

X-ray emitting region is low in the chromosphere. On this

basis, we would expect that the hard X-ray source would be

rapidly occulted with increasing longitude of the burst

location. What we have observed is just the contrary. One

possibility is that X-ray emission extends to heights between

4 5
10 and 10. km; in this case the density of the solar

atmosphere is sufficiently low that escape loss may dominate

collision loss and we would expect thin-target emission. A
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second possibility is that electrons accelerated in the flare

travel over long distances via magnetic arches, reentering

the high density regions far from their acceleration site.

In this case we would not see occultation of the hard X-ray

source even though the electrons may stop at low altitudes.

In either case, localized emission from chromospheric bright

points is not consistent with the emission which we see from

beyond the limb.

We note that our observational result, that hard X-ray

emission takes place on height scales of the order of 104-105 km,

is consistent with the size scales implied by the previous

observational data of Catalano and Van Allen (1973), Takakura

et al. (1971), and Kreplin and Taylor (1970). The result

is however very different from what we would have expected

on the basis of the correlation of hard X-ray bursts with

EUV and Hc bright point observations.

A possible explanation of the spectral difference between

center and over-the-limb bursts is that all bursts exhibit

both kinds of emission; in the center events thick-target

emission dominates, but for the limb events the thick target

source is occulted and thin-target emission dominates (H.

Hudson, priv. comm.). The difference between the spectral

distribution is consistent with this interpretation although

the magnitude of the difference, Ay= 3/4 is too small. However
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there are difficulties with this interpretation. First, we

are at a loss to know how the thick-target source can be

occulted or absorbed in the case of the bursts from 600900,

and yet their spectrum is like those of the over-the-limb

events. Secondly, we would expect that when the low-lying

hard X-ray source-- which dominates the emission on the disk --

is occulted, then for a given burst, the emission measure

and the hard X-ray flux observed from an over-the-limb burst

would be substantially reduced. However, this is not observed

(see table II).

In conclusion, these occultation measurements indicate that

hard X-ray emission takes place from extended regions in the

solar atmosphere.
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FIGURE CAPTIONS

Figure 1. X-ray bursts recorded by the OSO-7 UCSD experiment

and simultaneous whole disk He filtergrams

showing the accompanying He flares taken by the

8.6-in. vacuum telescope at Big Bear Solar Obser-

vatory; the fluxes of these two events differ by

almost three orders of magnitude. Subflares

-2 -1with 5.1-6.6 keV flux as low as 100 photons cm s

-lkeV can be identified on such filtergrams.

Figure 2. Powerful X-ray bursts without recorded He activity

on filtergrams taken by the 8.6-in. vacuum telescope

at Big Bear Solar Observatory.

Figure 3. Position of active center Mt Wilson 18839-McMath

11895 on the solar disk and extrapplated beyond

east limb; the times and positions of its associated

occulted X-ray bursts are also shown.

Figure 4. (a) Distribution of maximum temperature for the

individual over-the-limb bursts.

(b) Distribution of maximum emission measure for

the individual over-the-limb bursts.

(c) Maximum temperature as a function of minimum

visible height for each occulted burst.

(d) Maximum emission measure as a function of

minimum visible height for over-the-limb bursts.



Figure 5. Distribution of characteristic cooling times for

33 over-the-limb events. T is defined in the text.

Figure 6. An example of a burst for which the temperature

decay fits a power law. This event occurred on

Feb. 8, 1972.

Figure 7. Distribution of peak 20 keV flux for individual

over-the-limb events.

Figure 8. (a) Distribution of the frequency of occurrence of

the spectral indices at peak 20 keV flux for

59 center events.

(b) Same distribution for 37 limb events (hatched)

and for 25 over-the-limb events (black).



FIGURE CAPTIONS

o

Figure A. OSO-5 9.1-10.5 A X-ray contour map on 22-23 May

1972. Contour intensities are in units of

-6 -2 -110 ergs cm sec 1 . The strong enhancement

near the east limb is associated with flare acti-

vity occuring in McMath region 11895 (Mt Wilson

18935) at East 1020; the group is to rotate on

the disk late on May 23 or early on May 24.

niversity College of London and Leicester

University)

Figure B. White-light photograph of the solar disk around

1630 UT on May 25, 1972. Mt Wilson sunspot group

18935 which appeared at the east limb 1 1/2 day

earlier is pointed out.
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APPENDIX I

The most helpful observations for identifying activity

behind the limb and discriminating between east and west limbs

as its seat, were the soft X-ray contour maps with spatial

resolution of 1.6 arc min obtained by the University College

of London and Leicester University X-ray experiment on OSO-5.

The maps reproduced in SGD are from one or two orbits of
O

"quick-look" data and give a solar image at 9.1-10.5 A.

The maps are generally from non-flare periods and display in

a striking way the hot coronal components of active regions.

The X-ray enhancement appears or disappears well before or

after east or west limb passage of a group, typically one to

two days. Such a map with contour intensities in units of

10-6 ergs cm-2sec-1 is shown in Figure A for May 22-23 1972;

the strong X-ray source near the east limb was associated with

McMath region 11895 (Mt. Wilson 18935) which produced seven

X-ray bursts with fluxes greater than 103 photons cm -2sec-lkeV
-1

with limb occulted He flares (Figure 3 in the text). Figure B

shows a white light picture of the sun on May 25, 1972 (1630 UT)

at Mount Wilson Observatory. McMath region 11895 is indicated

by an arrow.



APPENDIX II

Table A gives 54 strong X-ray bursts (5.1-6.6 keV flux

30 -2 -1 -1
greater than 103 photons cm sec keV ) accompanied by no Ha

flare. The bursts originate from 17 candidate active regions;

their extrapolated positions and the burst minimum visible

heights are given in the last two columns.



APPENDIX III

Computation of X-ray burst physical parameters

Table B lists the 37 X-ray bursts for which the thermal

plasma and non-thermal electron distribution parameters were

determined using the OSO-7 counting rate data. The procedure

has been discussed in more details by McKenzie et al. (1973).

We give the main points of the method.

The temperature T of the X-ray emitting plasma can be

calculated by taking the ratio of the fluxes measured in the

different channels. Knowing the flux at the satellite and

the temperature of the plasma allows the calculation of the

2emission measure I ne dV following Culhane et al. (1970):V e

N(E) = 4.4 x 10- 41E1.3 T0 .2 exp [-E [1 (E 0.33kT -1.0T 88.0
2 -2 -1 -1xfVne dV photons cm sec 1 keV-

at earth distance, (i)

where E is the photon energy in keV, T is the electron

temperature in deg K and fne dV is the emission integral.

2
T and neV are determined by the best fit to the pulse height

distribution when folded through the proportional counter

response including resolution spread. The several constraints

on the dynamic range over which the analysis can be carried

out.have been discussed by Datlowe et al. (1974 a and b).

Columns five and six of Table B give the maximum values of the

temperature and emission measure for each event.



iv

The spectrum above 10 keV consists of a power law of

the form

F(hv) = A(hv)-y (ii)

where F (hv) is the flux in photons cm- 2 sec-lkeV - I and y

the spectral index, plus an extrapolation of the thermal

spectrum. Using T and n2V previously determined, the evente
is classified as Hard (column four). The values of A and y

are determined by the best fit to the pulse height distri-

bution when the spectrum is folded through the response of

the scintillator.

The index ym in column eight is the value of y at them

time of peak non-thermal 20 keV flux. The value Ymin is

less reliable and represents the smallest spectral index

computed during the portion of the eventwhich was analysed.

To determine the electron spectrum which produces the

hard X-rays, one has to assume something about the way

electrons dispose of their energy. In one case, the electrons

rapidly transfer their energy to the medium through collisions

or plasma wave-particle interactions; this is the so-called

thick-target model. In the second case, called thin-target

model, decay is dominated by the escape of suprathermal

electrons to a region in the corona where density is low enough

that bremsstrahlung does not occur at detectable levels.

Brown (1971) has shown that the thick-target power input

in the form of kinetic energy of electrons above E keV, where



V

Ec is a low energy cut-off in the electron spectrum, is

Pthick(Ec,y) = 4.29 x 1024 Ay2,(y-l) B(y-1,3/2)

-1x E erg sec , (iiic

where B(x,y) is the Beta function.

If escape dominates (thin-target), the X-ray spectrum

arises from a population of electrons whose spectrum is

nearly unchanged from the injection spectrum. The thin-

target power is

Pthin = Pthick/ (iv)

An average value for the spectral index y may be defined

over the inferred electron spectrum in the following way

= E P thick At
P thin At (v)thin



Table 1

Active regions with X-ray bursts behind the limb

Date of Number Candidate region Limb passage
burst of bursts Mt Wilson McMath Limb Date Approximate time

31 Dec 71- 6 18665 11656-57 West 31 Dec. 71 0000 UT
1 Jan 72

13 May 72 4 18834 11883 East 13 May 72 2000 UT

22-23 May 72 7 18834 11895 East 24 May 72 0000 UT

11-12 Aug. 72 6 18935 11976 West 11 Aug. 72 1000 UT

26-27 Aug. 72 4 18962 12011 East 26 Aug. 72 2200 UT

22-23 Oct. 72 7 19026 12044 East 230ct. 72 0000 UT



TABLE II*

X-ray burst parameters

Location Events A ** Duration+ FWHM Y ++ Y T EM T(sec) (sec) (cm ) 6(sec) (10 k)

Over limb 25 0.84 123 71 4.6 5..2 800 5 x 1048 17.6

Limb 37 0.79 82 41 4.4 4.9 650 4 x 1048 17.3

Center 59 0.90 92 31 3.8 4.3 570 3 x 1048 17.7

All events 122 0.77 92 46 4.0 4.6 600 4 x 1048 17.2

* Quantities listed here are median values.

** Peak 20 keV flux in photons cm 2 sec I keV

+ Duration above the threshold of 0.1 photons cm-2 sec- keV- .
The time resolution is 10.24 seconds.

++ Ym is the spectral index at the time of 20 keV peak flux.

y is the average spectral index.

+++ See Table II in Datlowe (1974b).
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Table A

X-ray bursts from flares near and behind the limb
-2-1 -1

Date Time Fluxes (photons cm s key ) Candidate region Longitude Minimum visible

UT) 5.1-6.6 keV 20-30 keV (Mt Wilson) (o) height (km)

1971 28 Oct 0632 2 x 103 0.31 18594 W88 0

28 Oct 2130 3 x 103 0.15 18594 W97 5000

10 Nov 1057 5 x 103 0.21 18622 E122 125000

10 Nov 1340 5.2 x 103 0.62 18622 E120 108000

19 Nov 1400 > 104 0.67 18633-34 E114 66000

20 Nov 0720 2.6 x 104 7.24 18633-34 E104 21000

31 Dec 0110 7 x 103 0.44 18665 W89 0 double burst

31 Dec 0215 1.4 x 103 0.30 18665 W90 0 double burst

31 Dec 0700 0.6 x 103 0.12 18665 W92 400

31 Dec 1355 1.6 x 103 0.17 18665 W95 2000

1972 01 Jan 1008 1.8 x 103 0.17 18665 W105 24500

01 Jan 1230 1.8 x 103 0.22 18665 W106 28000

27 Jan 1720 0.5 x 103 -- 18683-84 W94 1400

28 Jan 0400 9 x 103 0.21 - 18683-84 W100 10600

30 Jan 1520 7.5 x 103 0.38 18696 W89 0

30 Jan 1805 2 x 103 0.30 18696 W91 100

08 Feb 0715 7.6 x 103 0.52 18698 WI02 15500
18715-19 E94 1400



08 Feb 1950 2.2 x 103 0.24 18698 W110 44500
18715-19 E90 0

15 Feb 1633 5.3 x 103 0.44 18732 E95 2000

29 Feb 1515 >5 x 104 1.76 18748 E94-96 1400-3550

13 May 0000 > 103  -- 18834 E100 10600

13 May 0130 > 103 -- 18834 E99 8500

13 May 0210 1.7 x 103 -- 18834 E98 7000

13 May 1357 2.2 x 104 0.80 188,34 E92 400

22 May 0530 103 -- 18839 E113 60000

22 May 2109 7.7 x 103 0.39 18839 E103 18000

22- y 2300 9.4 x 103 0.21 18839 E102 15000

23 May 1120 4.9 x 103 1.77 18839 E97 5000

23 May 1412 2.4 x 103 0.40 18839 E96 3500

23 May 1546 1.1 x 104 0.60 18839 E94 1500 double burst

23 May 2021 2.2 x 103 -- 18839 E93 700

15 Jul 0255 2.1 x 104 2.18 18903 W92 400

15 Jul 0630 0.95 x 103 -- 18903 W94 1400,

11 Aug 0010 8.1 x 103 0.50 18935 W83 0

11 Aug 0810 1.7 x 103 0.18 18935 W87 0

11 Aug 1100 0.9 x 103 0.35 18935 W90 0

11 Aug 2325 3.5 x 103 0.95 18935 W96 3500

12 Aug 1440 >3 x 104 >0.50 18935 W105 24500

12 Aug 2045 >6 x 103 -- 18935 W109 40000



26 Aug 0343 8.7 x 103 1.14 18962 E98 7000

26 Aug 0832 1.0 x 103 0.17 18962 E95 2100

26 Aug 2225 8.3 x 103 0.65 18962 E88 0

27 Aug 0254 1.2 x 104 0.47 18962 E85 0

18 Sep 2200 1.4 x 103 -- 18992 E97 5000

22 Oct 0942 3 x 103  0.25 19026 E96 3500

22 Oct 1050 2 x 104 2.66 19026 E95 2100

22 Oct 1105 7 x 103  0.20 19026 E95 2100

22 Oct 1230 1.0 x 104  0.87 19026 E94 1400

22 Oct 2000 3.8 x 103 0.21 19026 E90 0

23 Oct 0204 2.7 x 103 1.69 19026 E86 0

23 Oct 0220 7.9 x 103 0.33 19026 E86 0
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Table B

Physical parameters of X-ray bursts from behind the limb flares

OSO-7 Date Time Spectrum T EM (min) A (20 keV)

orbit max max m
6 47 -3

xl0 K x 10 cm

1971
446 Oct. 28 0632 Hard 13.88 30 3.94 3.61 0.48

456 Oct. 28 2130 Soft 16.12 41

649 Nov. 10 1054 Soft 20.22 23

651 Nov. 10 1340 Hard 18.97 22 4.39 4.01 1.05

1430 i Dec. 31 0103 Hard 15.59 10 3.62 2.68 0.18

1430 ii Dec. 31 0110 Hard 14.35 93 4.62 4.62 0.75

1431 i Dec. 31 0210 Hard 15.84 9 4.33 3.01 0.25

1431 ii Dec. 31 0217 Hard 13.96 20 3.57 3.53 0.40

1438 Dec. 31 1354 Soft 14.47 20

1972

1451 Jan. 01 1003 Soft 17.49 18

1453 Jan. 01 1230 Hard 18.22 27 4.9 0.34

1865 Jan. 28 0400 Soft 13.91 90

1903 Jan. 30 1520 Hard 15.35 74 4.24 4.24 0.77

1905 Jan. 30 1805 Hard 17.93 -- 4.31 3.44 0.54

2037 Feb. 08 0715 Hard 22.37 97 5.51 3.83 1.07

2151 Feb. 15 1633 Hard 17.62 47 5.30 2.98 1.03

2367 Feb. 29 1515 Hard 17.69 >220 5.69 4.04 4.66

3503 May 13 0210 Soft 10.44 35

3512 May 13 1357 Soft 15.64 129



3656 May 22 2109 Hard 21.26 70 5.43 4.19 0.77

3657 May 2300 Hard 14.20 99 4.98 4.45 0.46
22-23

3665 May 23 1120 Hard 17.94 51 4.16 3.92 3.74

3667 May 23 1412 Hard 23.63 21 3.95 3.36 0.72

3668 i May 23 1540 Hard 27.07 >115 3.45 3.32 0.75

3668 ii May 23 1546 Hard 27.07 92 5.96 5.96 1.67

3671 May 23 2021 Soft 12.36 32

4900 Aug. 11 0010 Hard 11.80 129 5.80 5.78 0.95

4905 Aug. 11 0810 Soft 16.11 18

4915 Aug. 11 2325 Hard 22.72 19 4.17 3.92 1.62

5135 Aug. 26 0343 Soft 18.53 106

5147 Aug. 26 2225 Soft 11.67 ---

5150 Aug. 27 0254 Hard 19.32 106 6.57 3.76 1.01

6026 Oct. 22 1051 Hard 14.58 65 5.35 5.42

6027 Oct. 22 1230 Hard 18.79 109 6.08 5.56 1.88

6032 Oct. 22 2000 Soft 12.78 52

6036 i Oct. 23 0203 Hard 13.56 25 2.60 2.33

6036 ii Oct. 23 0216 Hard 15.29 74 7.27 0.70
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Figure B.




